IKBKE regulates cell proliferation and epithelial–mesenchymal transition of human malignant glioma via the Hippo pathway
نویسندگان
چکیده
IKBKE is increased in several types of cancers and is associated with tumour malignancy. In this study, we confirmed that IKBKE promoted glioma proliferation, migration and invasion in vitro. Then, we further discovered that IKBKE increased Yes-associated protein 1 (YAP1) and TEA domain family member 2 (TEAD2), two important Hippo pathway downstream factors, to induce an epithelial-mesenchymal transition (EMT), thus contributing to tumour invasion and metastasis. We also testified that YAP1 and TEAD2 promoted epithelial-mesenchymal transition (EMT) in malignant glioma. Furthermore, we constructed nude mouse subcutaneous and intracranial models to verify that IKBKE could attenuate U87-MG tumourigenicity in vivo. Collectively, our results suggest that IKBKE plays a pivotal role in regulating cell proliferation, invasion and epithelial-mesenchymal transition of malignant glioma cells in vitro and in vivo by impacting on the Hippo pathway. Therefore, targeting IKBKE may become a new strategy to treat malignant glioma.
منابع مشابه
EMT related lncrnas’ as novel biomarkers in glioblastoma: a review article
Glioma is the most common type of brain tumor and according to the 2016 WHO classification, based on invasion level, it is divided into four categories. The most severe and invasive type is grade IV glioma or glioblastoma (GBM), which has a very poor prognosis and a survival rate of only 15 months. However, the molecular pathway of invasion in malignant glioma tumors has not yet been clearly el...
متن کاملHippo signaling promotes JNK-dependent cell migration.
Overwhelming studies show that dysregulation of the Hippo pathway is positively correlated with cell proliferation, growth, and tumorigenesis. Paradoxically, the detailed molecular roles of the Hippo pathway in cell invasion remain debatable. Using a Drosophila invasion model in wing epithelium, we show herein that activated Hippo signaling promotes cell invasion and epithelial-mesenchymal tran...
متن کاملTEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition.
The TAZ transcription co-activator has been shown to promote cell proliferation and to induce epithelial-mesenchymal transition. Recently we have demonstrated that TAZ is phosphorylated and inhibited by the Hippo tumor suppressor pathway, which is altered in human cancer. The mechanism of TAZ-mediated transcription is unclear. We demonstrate here that TEAD is a key downstream transcription fact...
متن کاملOverexpression of TAZ promotes cell proliferation, migration and epithelial-mesenchymal transition in ovarian cancer
The Hippo pathway is dysregulated in multiple types of human cancer, including ovarian cancer. Nuclear expression of yes-associated protein 1 (YAP1), a downstream transcription coactivator of the Hippo pathway, has been demonstrated to promote tumorigenesis in ovarian cancer and may serve as a poor prognostic indicator. However, transcriptional coactivator with PDZ binding motif (TAZ), a downst...
متن کاملThe Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis
Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in...
متن کامل